

Name: _____

Date: _____

Section 7.4 Relations with Absolute Value Equations

Contest	Year	Number	Answer

What are both values of "x" which satisfy $x^2 + 5|x| - 6 = 0$? (CNML 1987 1-3)

What is the area of the region bounded by the graph of $|x+y| + |x-y| = 4$ (CNML 1987 2-5)

14. What is the area of the region defined by the inequality $|3x - 18| + |2y + 7| \leq 3$?

(A) 3 (B) $\frac{7}{2}$ (C) 4 (D) $\frac{9}{2}$ (E) 5

7. What is the area enclosed by the graph of $|3x| + |4y| = 12$?

(A) 6 (B) 12 (C) 16 (D) 24 (E) 25

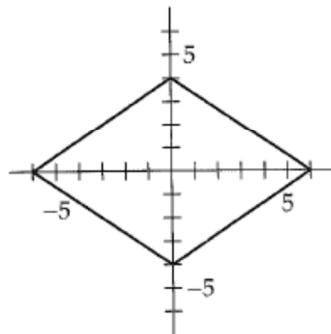
14. What is the area of the region defined by the inequality $|3x - 18| + |2y + 7| \leq 3$?

(A) 3 (B) $\frac{7}{2}$ (C) 4 (D) $\frac{9}{2}$ (E) 5

409. Solve for all real values of y : $|3y + 7| = |2y - 1|$. (MATHCOUNTS 1990)

410. Find the area of the region determined by the system

$$\begin{aligned}y &\geq |x| \\y &\leq -|x + 1| + 4.\end{aligned}$$


(MATHCOUNTS 1992)

411. Find the coordinates of the points of intersection of the graphs of the equations $y = |2x| - 2$ and $y = -|2x| + 2$. (MATHCOUNTS 1989)

412. Find the equation whose graph is as shown at the right.

(MATHCOUNTS 1989)

413. Prove that $|2x| + |2y| \geq |x| + |y| + |x + y|$ for all real x and y .

Find the area of the region bounded by the graph of the equation: $|2x - 2| + |y - 2| = 6$

$|x + 2| + |y - 3| = 1$ is an equation for a square. How many units are in the lengths of its diagonals?

What is the number of square units in the area of the region determined by the following system:

$$|x| + |y| \leq 4; \quad y \leq 0$$